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Abstract: Automatic segmentation of blood vessels in the dorsal skinfold window chamber
(DWSC) model is a prerequisite for the evaluation of vascular-targeted photodynamic therapy
(V-PDT) biological response. Recently, deep learning methods have been widely applied in blood
vessel segmentation, but they have difficulty precisely identifying the subfascial vessels. This
study proposed a multi-step deep neural network, named the global attention-Xnet (GA-Xnet)
model, to precisely segment subfascial vessels in the DSWC model. We first used Hough transform
combined with a U-Net model to extract circular regions of interest for image processing. GA
step was then employed to obtain global feature learning followed by coarse segmentation for
the entire blood vessel image. Secondly, the coarse segmentation of blood vessel images from
the GA step and the same number of retinal images from the DRIVE datasets were combined
as the mixing sample, inputted into the Xnet step to learn the multiscale feature predicting fine
segmentation maps of blood vessels. The data show that the accuracy, sensitivity, and specificity
for the segmentation of multiscale blood vessels in the DSWC model are 96.00%, 86.27%,
96.47%, respectively. As a result, the subfascial vessels could be accurately identified, and the
connectedness of the vessel skeleton is well preserved. These findings suggest that the proposed
multi-step deep neural network helps evaluate the short-term vascular responses in V-PDT.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Vascular targeted photodynamic therapy (V-PDT) based on local destruction of vasculature is an
effective therapeutic modality for treating vascular-related diseases, such as prostate cancer, age-
related macular degeneration, and port-wine stain [1–4]. However, the therapeutic mechanisms
and biological responses for vascular damage during V-PDT have not been fully explored.
Previous studies showed that the biological response after V-PDT treatment could be measured
based on the time-dependent change of blood vessel diameter [5,6]. For this, mice’s dorsal
skinfold window chamber (DSWC) is widely used as an in vivo model to evaluate the influence
of dosimetric parameters on V-PDT efficacy, which includes photosensitizer concentration and
light dose, tissue oxygen level, and singlet oxygen production [7–10]. In addition, the dynamic
changes (i.e., morphology, branching pattern, density, and diameter) of targeted vasculatures
were successfully monitored for optimizing the dosimetric parameters [11–13].

To quantitatively measure blood vessel diameter, the traditional segmentation algorithms,
such as adaptive thresholding and Hessian filtering, were firstly adopted to obtain a binary map
of blood vessels [14–16]. Then, the binary map was skeletonized by a thinning process that
iteratively eliminated pixels from the boundaries toward the centerline [17,18]. Finally, the twice
distance between the vessel skeleton and vessel boundaries was defined as the vessel diameter.
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For this, the skeleton of a blood vessel is an important geometric clue for quantifying the vessel
diameter. Since the depth-resolved capability is not given by the wide-field imaging technologies
(i.e., stereomicroscope), local blood vessels are inevitably shielded by the fascia layers, preventing
sluggish or absent blood flow detection in the DSWC model [19,20]. Using the earlier algorithms
may result in the fracture of subfascial vessel segmentation and disconnect in the vessel skeleton.
To address this concern, we previously used a mean filter of a larger kernel to avoid the fracture
of blood vessels in the dynamic threshold algorithm [13]. Unfortunately, the overlarge kernel will
reduce segmentation accuracy for small blood vessels. Hence, a robust segmentation algorithm
is needed for identifying multiscale vessels and meeting the requirement of skeletonization for
subfascial vessels.

Recently, deep learning methods based on U-Net network structure were designed to construct
the highly detailed segmentation maps with very limited trading samples, which have been
widely adopted to improve the accuracy (Acc), sensitivity (Se), and specificity (Sp) of vessel
segmentation [21–26]. For instance, Wu et al. used a multiscale network followed network
(MS-NFN) model to improve the retinal vessel segmentation accuracy, which used an ‘up-pool’
NFN submodel and a ‘pool-up’ NFN submodel to construct retinal blood vessel segmentation
[23]. Li et al. modified residual U-Net (MResU-Net) to segment vessel pixels accurately. An
before-activation residual block structure was utilized to improve the performance of U-Net-based
methods [24]. Guo et al. utilized the spatial Attention U-Net (SA-UNet) to enhance the ability of
retinal blood vessel segmentation [25]. In this model, the spatial attention module was added
between the encoder and decoder of the Backbone to ensure the identification of edges and small
blood vessels. Compared to the above variants of U-Net, the UNet++model using the redesigned
skip connections and deep supervision has achieved higher performance for semantic and instance
segmentation [27]. In this work, we proposed a multi-step deep neural network, named by global
attention-Xnet (GA-Xnet) model, consisting of three steps: (1) U-Net Hough was used to ensure
better robustness of extraction of a circular region of interest. (2) GA step focuses on utilizing
Attention U-Net [28] to learn global features of blood vessel images in the DSWC model based on
manually labelling training samples and achieving coarse segmentation. In coarsely segmented
images, the trunk of the blood vessel was labelled accurately without supervision. (3) In the Xnet
step [27], which refers to UNet++, the mixed samples combining the coarse labelling images
and the retinal images of DRIVE datasets [29] were fed into the UNet++ model to optimize
the identification ability for the multiscale feature of blood vessels. Compared to the U-Net
method, the higher accuracy segmentation images were obtained using the GA-Xnet model, and
the continuity of skeletonization for subfascial vessels could be successfully preserved.

2. Methods

2.1. Blood vessels in the DSWC model

Dorsal skinfold chambers (APJ Trading Co., Ventura, CA, USA) were implanted in BALB/c nude
mice (male, 25∼30 g, Shanghai SLAC Laboratory Animal Co. Ltd.) using a well-established
protocol [19,20,30]. For the V-PDT experiment, RB solution at a dosage of 25 mg/kg body
weight (Sigma-Aldrich, St. Louis MO, USA) was intravenously administered to the tail-vein
of mice. Immediately after RB administration, a 532 nm semiconductor laser was used as the
light source to uniformly irradiate the blood vessels in the DSWC model. An irradiance of 50
mW/cm2 and a total radiant exposure of 30 J/cm2 was employed. The images of the DSWC
model were captured before and immediately after V-PDT using a Leica MZ16FA microscope,
which is equipped with a DFC300FX camera. The lens system provides 16×magnification,
halogen light source (Leica CLS 150X), and a fiber optic ring illuminator. All animal procedures
and experiments were approved by the Institutional Animal Care and Use Committee of the
Fujian Normal University.
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2.2. Image preprocessing

The flow chart for automatic extraction circular ROI is indicated in Fig. 1. To improve the
segmentation efficiency of the blood vessel image, the preprocessing procedures of the image
include labeling circular ROI, U-Net model for training, and ROI segmentation by trained model
followed by hold padding and image binarization. After this, the edge of the binary image could
be identified using a Canny operator, and the automatic extraction circular ROI could be achieved
by using the proposed Circle Hough transform [11,31,32].

Fig. 1. Flow chart for automatic extraction circular ROI.

2.3. Multi-step deep neural network

The proposed GA-Xnet model, as diagrammed in Fig. 2, was used to segment the blood vessels
in the DSWC model in two steps: (1) Extracting the global feature and automatically labeling the
large blood vessels by using the Attention U-Net model. (2) Based on transfer learning theory,
the mixed sample including both labeled large vessels images and retinal images from DRIVE
datasets were randomly partitioned into the block samples of 48× 48 pixels that containing
sufficient feature information of large blood vessels, which was then fed into UNet++ model for
training. The trained model segmented multiscale blood vessels (i.e., artery, vein, and capillaries)
and accurately identified subfascial vessels.

Fig. 2. The multi-step deep neural network of the GA-Xnet model: Attention U-Net was
used in the GA step to achieve coarse segmentation for large blood vessels (marked by the
red box). The labeled images of large blood vessels and the DRIVE data retina images were
then combined into the UNet++ model in the Xnet step for multiscale feature learning for
blood vessels (marked by the blue box).
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2.3.1. Coarse segmentation

The coarse segmentation of large blood vessels was realized through data preprocessing and model
training by the GA step. Image manual labeling and augmentation become the crucial procedures
in image preprocessing since the lack of blood vessel datasets for the DSWC model. For this,
typical blood vessel images containing subfascial vessels were selected as a training set in this
study. The large blood vessels were manually marked with accurate pixel-wise labels, followed by
removing non-vascular information. In particular, the subfascial vessels were precisely identified
to train the Attention U-Net model for identification. Then, the constructed blood vessel masks
were fed into the Attention U-Net model. As shown in Fig. 2, the integrating attention-gate (AGs),
denoted by the symbol aO in the Attention U-Net model, was added for progressively suppressing
feature responses in non-vascular regions and ensuring the identification for subfascial vessels. To
overcome the issue of limited datasets, the augmenting coarse segmented images were obtained
through rotating, shifting, zoom-in/out, and flipping operations [21].

2.3.2. Fine segmentation

The coarse segmentation blood vessel images were firstly recovered as initial size by the nearest
neighbor interpolation algorithm [33]. To effectively identify the multiscale blood vessels from
large to small, the coarse segmentation images were combined with the retinal images of DRIVE
datasets to generate the mixed sample [34–36]. In the transductive transfer learning setting, the
mixed ratio between coarse segmentation images and DRIVE datasets was carefully evaluated
for obtaining the optimal parameters θ∗ of empirical risk minimization (ERM), as follows:

θ∗ ≈ arg min
θ∈Θ

ns∑︂
i=1

Pt(xti, yti)

Ps(xsi, ysi)
· l(xsi, ysi, θ) (1)

where (xti, yti) refers to each instance of target domain in coarse segmentation images, while
(xsi, ysi) refers to each instance of source domain in DRIVE datasets. yti and ysi is the labeled
data of xti and xsi in task T, respectively. Pt(xti, yti) and Ps(xsi, ysi) is a probabilistic distribution
of each instance in target and source domain, respectively. l(xsi, ysi, θ) is a loss function related to
the parameter θ. Due to the similar recognition task for the blood vessels in the DSWC model
and retinal images, the Pt(xti, yti) over Ps(xsi, ysi) ratio could be obtained using Eq. (2).

Pt(xti, yti)

Ps(xsi, ysi)
≈

P(xsi)

P(xti)
(2)

In this case, an appropriate mixed proportion of training datasets was determined for the
individual instance by estimating P(xsi)

P(xti)
. Moreover, the augmentation of sample datasets was

achieved through the sliding-window method during training [21]. All augmenting sample
datasets were eventually inputted into the UNet++ model, endowed with a stronger ability for
multiscale feature learning, as indicated in Fig. 2.

2.4. Evaluation metrics

To quantify the performance of the GA-Xnet model, the Acc, Se, and Sp could be determined by
using Eq. (3), respectively [26].

Acc = TP+TN
TP+FP+TN+FN

Se = TP
TP+FN

Sp = TN
TN+FP

(3)
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where true positive (TP) and true negative (TN) are correctly identified pixels belonging to
blood vessels and background, while false positive (FP) and false-negative (FN) are incorrectly
identified pixels belonging to blood vessels and background, respectively.

3. Results and discussion

3.1. Automatic extraction of circular ROI

The process for automatic extraction of circular ROI is illustrated in Fig. 3. For comparison,
the same image of Fig. 5(a) in our previous study [13] was re-used as the original image in
Fig. 3(a) in this study. Based on the manual labeling images of the DSWC model (n= 6) by one
individual, 300 samples of 320×320 pixels were generated through rotating, sifting, zoom-in/out,
and flipping. The augmented samples were then inputted into the U-Net network to train the
segmentation model of circular ROI. For this, the trained U-Net model was first used to segment
irregular circular areas from the original image in Fig. 3(a), and the segmentation image was
shown in Fig. 3(b). The binary embodiment of Fig. 3(c) was obtained via the processing of
holding padding and image binarization. After this, the edge of the binary image marked with the
white dots in Fig. 3(d) was identified using the Canny operator. To exclude the incorrect boundary
points, the multiplier between the empirical threshold rate of 0.6 and the highest counts of the
Hough space was selected as the threshold value. The boundary points above the threshold value
were then sought and labeled with red dots in Fig. 3(d). According to the previous approach [13],
the standard circular domain shown in Fig. 3(e) could be obtained by calculating the average
center coordinate and the minimum diameter for the prior red dots. The overlay image was
illustrated in Fig. 3(f), which was the reconstructed circular region (Fig. 3(e)) overlayed with the
original image (Fig. 3(a)). The image of the extracted circular ROI was shown in Fig. 3(g), which
was obtained using the dot products between Fig. 3(a) and Fig. 3(e). By comparing Fig. 3(e)
and Fig. 3(g), one finds that the U-Net Hough can successfully extract the circular ROI from the
image of the DSWC model.

Fig. 3. The process of auto-selected circular ROI using U-Net Hough. (a) Original image;
(b) segmentation image; (c) Binary image of an irregular circular region; (d) the edge of
the binary image (labeled by the white dots) and the boundary points above a threshold
value (marked by the red dots); (e) Image of the reconstructed circular region using Hough
transform; (f) Overlay image of the reconstructed circular area and original image; (g) Image
of the extracted circular ROI.

To further evaluate the robustness of U-Net Hough, Otsu Hough was adopted for the comparative
study [13]. Due to the non-uniform reflected light intensity of the metal frame, the false edges
(labeled with white dots) around the metal frame were extracted by using the Otsu and Canny
operators in Figs. 4(a2), 4(a3), 4(a4) and Figs. 4(b2), 4(b3), 4(b4), respectively. Significantly
different distribution was observed between the boundary points (labeled with red dots) above
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Fig. 4. (a1) (b1) The original images, (a2)-(a4), (a6)-(a8), (b2)-(b4), (b6)-(b8) the edge
of binary images (labeled by the white dots) and the boundary points above threshold rate
(marked by the red dots) obtained by using Otsu and U-Net with various threshold rates (0.8:
red circle; 0.6: blue circle; 0.3: yellow circle), respectively. (a5) (a9) (b5) (b9) Auto-selected
circular ROIs overlapped with the original image achieved by using Otsu Hough and U-Net
Hough, respectively (n= 2).

Fig. 5. Original images and corresponding labeled vascular binary images as training
samples in GA step (n= 6).

the threshold value for various threshold rates of 0.3, 0.6, and 0.8. As shown in Figs. 4(a5) and
4(b5), the inconsistent circular ROIs were obtained with Otsu Hough. The red circular ROI in
Figs. 4(a5) and the yellow circular ROI in Figs. 4(b5) were mismatched compared to the other
ROIs, respectively. Compared to the Otsu Hough, the precise edges (labeled with white dots)
around the metal frame were observed by using U-Net and Canny operator in Figs. 4(a6), 4(a7),
4(a8) and Figs. 4(b6), 4(b7), 4(b8), respectively. Interestingly, the boundary points (labeled with
red dots) above the threshold value indicate a similar distribution for various threshold rates of
0.3, 0.6, and 0.8. The consistent circular ROIs were obtained by U-Net Hough, as shown in
Figs. 4(a9) and 4(b9).
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The Acc, Se, and Sp could be further calculated according to Eq. (3). In this case, the TP and
TN are correctly identified pixels that belong to the circular ROI and background. In contrast, FP
and FN are incorrectly identified pixels that belong to circular ROI and background, respectively.
For this, the performance for automatic extraction of circular ROIs (n= 10, data not shown) were
evaluated by using the manual labeling circular ROI as standards. As illustrated in Table 1, The
Acc, Se and Sp are 94.47± 0.02%, 86.30± 0.02%, and 99.99± 0.01% for U-Net Hough, which
are higher than those obtained by Otsu Hough. This finding reveals that U-Net Hough provides
better robustness than Otsu Hough.

Table 1. Performance of U-Net Hough and Otsu Hough

Method Acc (%) Se (%) Sp (%)

U-Net Hough 94.47± 0.02 86.30± 0.02 99.99± 0.01

Otsu Hough 89.63± 2.39 81.08± 3.89 95.41± 1.71

3.2. Coarse segmentation of large vessels

To ensure the training efficacy of the GA step, vascular images containing subfascial vessels in
the DSWC model were selected as manually labeled samples, illustrated in Fig. 5. The large-scale
blood vessels in the original images were individually marked as black pixels by one person using
Microsoft drawing software. The black pixels were subsequently identified to reconstruct the
labeled vascular binary images. It could be seen that the fractured parts of subfascial vessels were
manually retrieved during the labeling process. After this, the labeled images were augmented
through rotating, sifting, zoom-in/out, and flipping.

To maintain the global feature of large blood vessels and to achieve specialized training on
subfascial vessels during the training process, the entire blood vessel images were used as training
objectives. Due to the hardware memory limitation of GeForce Quadro M4000 GPU, the original
blood vessel images of 1040×1392 pixels were firstly downsampled to 320×320 pixels, which
were fed into the GA step for training. The typical original images of blood vessels (n= 2) in
the DSWC model are shown in Figs. 6(a1) and 6(a2). The dynamic threshold algorithm (C= 3,
N= 35) [13] and the block image training method were chosen to compare coarse segmentation
images. As compared to the segmented images in Figs. 6(b1) and 6(b2), and in Figs. 6(c1)
and 6(c2), the segmented images in Figs. 6(d1) and 6(d2) have a better performance in dealing
with coarse segmentation of large blood vessels. Furthermore, the fracture of subfascial vessel
segmentation cannot be effectively restored by the dynamic threshold algorithm and block image
training method, as indicated by the yellow arrows in enlarged sub-images of Figs. 6(b2) and
6(c2). Meanwhile, the portion fascia was mistakenly identified as large vessels, as indicated by
the yellow arrows in the enlarged sub-images of Figs. 6(b1) and 6(c1). By contrast, the entire
image training method could avoid the mistake of dynamic threshold algorithm and block image
training, and effectively identify the subfascial vessels, as indicated by yellow arrows in the
enlarged sub-images of Figs. 6(d1) and (d2). Therefore, the entire image training method was
chosen to achieve the coarse segmentation of large vessels.

3.3. Fine segmentation of small vessels

The DRIVE datasets comprise color fundus images acquired using a Canon CR5 non-mydriatic
3CCD camera. Due to the similar image collection manner and feature of small vessels, the
DRIVE datasets were selected to construct the total training samples by combining with the
coarse segmentation images of blood vessels from the GA step (n= 40) with various mixing ratio.
According to Eq. (2), the mixing ratios were set as 2:1, 1:1, 1:2, and 1:5 based on the assumption
that the proportion of small blood vessels is in the range of 30%∼80% in the DSWC model. The
total training samples were then inputted into the Xnet step of the GA-Xnet model to generate
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Fig. 6. (a) Original images and segmentation images of blood vessels achieved by using (b)
dynamic threshold algorithm (C= 3, N= 35), (c) block image training, and (d) entire image
training, respectively (n= 2). The yellow arrows in the enlarged sub-images indicate the
superficial fascia in the original images and segmentation images using the three methods
above.

the probability multiscale blood vessels maps. In Xnet step, the total training samples were
randomly split into training set 90% and validation set 10%. Meanwhile, two manually labeled
multiscale vascular images in the DSWC model were used as the testing set. For both training
and inference, the size of each block was set as 48× 48 pixels. As shown in Figs. 7(a)- (d), the
small blood vessels in the enlarged sub-images could be clearly identified for various mixing
ratios. In addition, the Acc, Se, and Sp were obtained for further evaluating the performance of
different mixing ratios, respectively. Before calculating the Acc, Se, and Sp, the binary maps
of multiscale blood vessel were firstly obtained through binarization, and then the non-vascular
isolated points were further eliminated by using a region descriptor. As represented in Fig. 7(e),
the highest Se (88.87%) is achieved with the mixing ratio of 1:5, while the highest Acc (96.40%)
and Sp (96.89%) are obtained with the mixing ratio of 1:2. Compared to the mixing ratios of 2:1
and 1:1, the enlarged sub-images of the lower left corner in Fig. 7(c) and 7(d) indicate that the
undesired holes within the large vessels could be generated with the mixing ratios of 1:2 and 1:5,
respectively. The reason may be that the trained Xnet model is more sensitive to small blood
vessels and noise with the increased proportion of retinal vessels. As indicated in Fig. 7, the
most satisfying results can be achieved with the mixing ratio of 1:1, which could provide the
higher value of Acc (96.00%), Se (86.27%), Sp (96.47%) and effectively prevent the generation
of undesired holes in large blood vessels. Moreover, these values are superior to the values of Acc
(90.64%), Se (80.12%), Sp (92.83%) that derived by using the U-Net model [13]. Subsequently,
the optimal mixing ratio was set as 1:1 for fine segmentation of multiscale blood vessels.

In addition, we further compared the performance of GA-Xnet with other existing methods
currently used in the retinal vessel segmentation task. As represented in Table 2 the training
sets include retinal DRIVE dataset and vascular image of the DSWC model, and the mixing
ratio was set as 1:1. It could be seen that the GA-Xnet has the best performance of Se (86.27%),
while the Acc and Sp were comparable to that of U-Net, UNet++, and Attention U-Net models,
respectively. Compared to the values of Acc (90.64), Se (80.12%), Sp (92.83%) in our previous
study [13], the higher Acc (96.45%), Se (82.47%), and Sp (97.13%) were obtained by using
the region descriptors to remove the non-vascular isolated points. For this, the segmentation
performance of subfascial vessels was further evaluated for the U-Net and GA-Xnet models,
respectively.
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Fig. 7. Comparison of probability multiscale blood vessel maps with various mixing ratios
between coarsely segmented blood vessel images and retinal images: (a) 2:1 (b) 1:1 (c) 1:2
(d) 1:5, and (e) the corresponding performance of Acc, Se, and Sp.

Table 2. Performance of GA-Xnet and other methods

Method Acc (%) Se (%) Sp (%) Datasets (training) Mixing ratio (1:1) Datasets (test)

U-Net 96.45 82.47 97.13

DSWC+ DRIVE DSWC
UNet++ 96.28 80.17 97.06

Attention U-Net 96.22 79.44 97.04

GA-Xnet 96.00 86.27 96.47

3.4. Segmentation images for pre- and post- V-PDT

The original ROI images, probability blood vessel maps of a vascular image, vascular skeletons,
and overlay images of vascular skeleton and original image in the DSWC model are indicated
in Fig. 8. For the U-Net model, the subfascial vessels can be accurately identified only for
post-V-PDT, as marked by the white arrow in the fourth column of Fig. 8(b2). In this model,
the subfascial vessels marked by the yellow arrows for both pre-and post- V-PDT and the
subfascial vessels marked by the white arrows for pre-V-PDT cannot be identified. As a result,
the unrecognizing subfascial vessels for pre-V-PDT or post-V-PDT will undoubtedly result in a
calculation error for vasoconstriction. Fortunately, this potential error could be avoided through
the accurate identification of subfascial vessels by the proposed GA-Xnet model, as shown in
Fig. 8(c2). The subfascial vessels derived from the shield of superficial fascia for both pre-and
post- V-PDT could be successfully recognized and recovered, as marked by the yellow and white
arrows for all 3 cases.

Furthermore, the enlarged sub-images in Figs. 8(b2) and 8(c2) were further processed by using
the skeleton extraction algorithm [17,18]. Compared to the U-Net model, the skeleton continuity
of subfascial vessels was well preserved using the GA-Xnet model, as marked by the yellow
and white arrows in Figs. 8(c3) and 8(c4). This finding implies that the GA-Xnet model could
accurately quantify the blood vessel diameter (i.e., vasoconstriction).
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Fig. 8. (a1) The original ROI images and (a2) the corresponding enlarged sub-images
marked by the red rectangle box. (b1) (c1) Probability blood vessel maps of vascular images
in the DSWC model for pre-and post- V-PDT obtained by using U-Net and GA-Xnet model,
respectively. (b2) (c2) The enlarged sub-images for the probability blood vessel maps marked
by the red rectangle box. (b3) (c3) The vascular skeletons are processed by using a skeleton
extraction algorithm for (b2) and (c2), respectively. (b4) (c4) The overlay images of vascular
skeleton and the original image. The yellow and white arrows indicate the superficial fascia
in the original and processed images, respectively (n= 3).
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4. Conclusion

In conclusion, the GA-Xnet model was proposed to precisely segment subfascial vessels in the
DSWC model. The data show that the Acc, Se, and Sp for the segmentation of multiscale vessels
in the DSWC model are 96.00%, 86.27%, 96.47%, respectively. As a result, the subfascial vessels
could be accurately identified, and the connectedness of the vessel skeleton is well preserved.
Moreover, the potential error for vasoconstriction due to the unrecognized subfascial vessels
pre-V-PDT can be avoided by the proposed GA-Xnet model. These findings suggest that the
proposed multi-step deep neural network helps evaluate the short-term vascular responses in
V-PDT. In contrast, the feasibility of long-term responses should be further assessed.
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